For environmental engineering and consultancy services, visit PACIFIC SPECTRUM ENVIRONMENTAL.

Tuesday, June 30, 2009

Wet Scrubbers

Wet scrubber is a form of pollution control technology. The term describes a variety of devices that remove pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some other contact method, so as to remove the pollutants.

The design of wet scrubbers or any air pollution control device depends on the industrial process conditions and the nature of the air pollutants involved.

Inlet gas characteristics and dust properties (if particles are present) are of primary importance. Scrubbers can be designed to collect particulate matter and/or gaseous pollutants. Wet scrubbers remove dust particles by capturing them in liquid droplets. Wet scrubbers remove pollutant gases by dissolving or absorbing them into the liquid.

Any droplets that are in the scrubber inlet gas must be separated from the outlet gas stream by means of another device referred to as a mist eliminator or entrainment separator (these terms are interchangeable). Also, the resultant scrubbing liquid must be treated prior to any ultimate discharge or being reused in the plant.
There are numerous configurations of scrubbers and scrubbing systems, all designed to provide good contact between the liquid and polluted gas stream.

Figures 1 and 2 show two examples of wet scrubber designs, including their mist eliminators. Figure 1 is a venturi scrubber design. The mist eliminator for a venturi scrubber is often a separate device called a cyclonic separator.

Figure 1 - Venturi scrubber with mist eliminator


Figure 2 - Packed bed tower
Figure 2 has a tower design where the mist eliminator is built into the top of the structure. Various tower designs exist.

A wet scrubber's ability to collect small particles is often directly proportional to the power input into the scrubber. Low energy devices such as spray towers are used to collect particles larger than 5 micrometers. To obtain high efficiency removal of 1 micrometer (or less) particles generally requires high energy devices such as venturi scrubbers or augmented devices such as condensation scrubbers. Additionally, a properly designed and operated entrainment separator or mist eliminator is important to achieve high removal efficiencies. The greater the number of liquid droplets that are not captured by the mist eliminator the higher the potential emission levels.

Wet scrubbers that remove gaseous pollutants are referred to as absorbers. Good gas-to-liquid contact is essential to obtain high removal efficiencies in absorbers. A number of wet scrubber designs are used to remove gaseous pollutants, with the packed tower and the plate tower being the most common.
If the gas stream contains both particle matter and gases, wet scrubbers are generally the only single air pollution control device that can remove both pollutants. Wet scrubbers can achieve high removal efficiencies for either particles or gases and, in some instances, can achieve a high removal efficiency for both pollutants in the same system. However, in many cases, the best operating conditions for particles collection are the poorest for gas removal.

In general, obtaining high simultaneous gas and particulate removal efficiencies requires that one of them be easily collected (i.e., that the gases are very soluble in the liquid or that the particles are large and readily captured) or by the use of a scrubbing reagent such as lime or sodium hydroxide.

To read full article, click here.

Air Pollution Control Systems
Your One-Stop Online Source
For anything and everything
About Air Pollution Control Systems

No comments:

Post a Comment